首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   26篇
  2022年   2篇
  2021年   10篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   16篇
  2014年   18篇
  2013年   22篇
  2012年   32篇
  2011年   31篇
  2010年   25篇
  2009年   24篇
  2008年   26篇
  2007年   20篇
  2006年   21篇
  2005年   18篇
  2004年   12篇
  2003年   19篇
  2002年   18篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1991年   3篇
  1990年   3篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
  1967年   3篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有413条查询结果,搜索用时 281 毫秒
101.
Lrs4 and Csm1, components of the monopolin complex, localize to the rDNA where they regulate rDNA maintenance and segregation. During meiosis, the complex also associates with kinetochores to bring about sister kinetochore co-orientation, an essential aspect of meiosis I chromosome segregation. We show here that the Lrs4-Csm1 complex associates with kinetochores during mitosis. This kinetochore localization is observed during anaphase and depends on the on the Mitotic Exit Network, a signaling cascade essential for the completion of mitosis. Furthermore, we find that Lrs4 and Csm1 are important for chromosome segregation fidelity. Our results reveal a previously unanticipated function for Lrs4-Csm1 in mitotic chromosome segregation.Key words: mitosis, monopolin, Lrs4, Csm1, kinetochore, Mitotic Exit Network, chromosome segregation  相似文献   
102.

Background

Evidence has accumulated that multiple genetic and environmental factors play important roles in determining susceptibility to type 2 diabetes (T2D). Although variants from candidate genes have become prime targets for genetic analysis, few studies have considered their interplay. Our goal was to evaluate interactions among SNPs within genes frequently identified as associated with T2D.

Methods/Principal Findings

Logistic regression was used to study interactions among 4 SNPs, one each from HNF4A[rs1884613], TCF7L2[rs12255372], WFS1[rs10010131], and KCNJ11[rs5219] in a case-control Ashkenazi sample of 974 diabetic subjects and 896 controls. Nonparametric multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) were used to confirm findings from the logistic regression analysis. HNF4A and WFS1 SNPs were associated with T2D in logistic regression analyses [P<0.0001, P<0.0002, respectively]. Interaction between these SNPs were also strong using parametric or nonparametric methods: the unadjusted odds of being affected with T2D was 3 times greater in subjects with the HNF4A and WFS1 risk alleles than those without either (95% CI = [1.7–5.3]; P≤0.0001). Although the univariate association between the TCF7L2 SNP and T2D was relatively modest [P = 0.02], when paired with the HNF4A SNP, the OR for subjects with risk alleles in both SNPs was 2.4 [95% CI = 1.7–3.4; P≤0.0001]. The KCNJ11 variant reached significance only when paired with either the HNF4A or WFSI SNPs: unadjusted ORs were 2.0 [95% CI = 1.4–2.8; P≤0.0001] and 2.3 [95% CI = 1.2-4.4; P≤0.0001], respectively. MDR and GMDR results were consistent with the parametric findings.

Conclusions

These results provide evidence of strong independent associations between T2D and SNPs in HNF4A and WFS1 and their interaction in our Ashkenazi sample. We also observed an interaction in the nonparametric analysis between the HNF4A and KCNJ11 SNPs (P≤0.001), demonstrating that an independently non-significant variant may interact with another variant resulting in an increased disease risk.  相似文献   
103.
In the Turing test, a computer model is deemed to "think intelligently" if it can generate answers that are not distinguishable from those of a human. However, this test is limited to the linguistic aspects of machine intelligence. A salient function of the brain is the control of movement, and the movement of the human hand is a sophisticated demonstration of this function. Therefore, we propose a Turing-like handshake test, for machine motor intelligence. We administer the test through a telerobotic system in which the interrogator is engaged in a task of holding a robotic stylus and interacting with another party (human or artificial). Instead of asking the interrogator whether the other party is a person or a computer program, we employ a two-alternative forced choice method and ask which of two systems is more human-like. We extract a quantitative grade for each model according to its resemblance to the human handshake motion and name it "Model Human-Likeness Grade" (MHLG). We present three methods to estimate the MHLG. (i) By calculating the proportion of subjects'' answers that the model is more human-like than the human; (ii) By comparing two weighted sums of human and model handshakes we fit a psychometric curve and extract the point of subjective equality (PSE); (iii) By comparing a given model with a weighted sum of human and random signal, we fit a psychometric curve to the answers of the interrogator and extract the PSE for the weight of the human in the weighted sum. Altogether, we provide a protocol to test computational models of the human handshake. We believe that building a model is a necessary step in understanding any phenomenon and, in this case, in understanding the neural mechanisms responsible for the generation of the human handshake.  相似文献   
104.
The interplay of different proteases and glycosaminoglycans is able to modulate the activity of the enzymes and to affect their structures. Human plasma kallikrein (huPK) is a proteolytic enzyme involved in intrinsic blood clotting, the kallikrein-kinin system and fibrinolysis. We investigated the effect of heparin on the action, inhibition and secondary structure of huPK. The catalytic efficiency for the hydrolysis of substrates by huPK was determined by Michaelis-Menten kinetic plots: 5.12x10(4) M-1 s-1 for acetyl-Phe-Arg-p-nitroanilide, 1.40x10(5) M-1 s-1 for H-D-Pro-Phe-Arg-p-nitroanilide, 2.25x10(4) M-1 s-1 for Abz-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Ser-Arg-Gln-EDDnp, 4.24x10(2)M-1 s-1 for factor XII and 5.58x10(2) M-1 s-1 for plasminogen. Heparin reduced the hydrolysis of synthetic substrates (by 2.0-fold), but enhanced factor XII and plasminogen hydrolysis (7.7- and 1.4-fold, respectively). The second-order rate constants for inhibition of huPK by antithrombin and C1-inhibitor were 2.40x10(2) M-1 s-1 and 1.70x10(4) M-1 s-1, respectively. Heparin improved the inhibition of huPK by these inhibitors (3.4- and 1.4-fold). Despite the fact that huPK was able to bind to a heparin-Sepharose matrix, its secondary structure was not modified by heparin, as monitored by circular dichroism. These actions may have a function in the control or maintenance of some pathophysiological processes in which huPK participates.  相似文献   
105.
All colonial diazotrophic cyanobacteria are capable of simultaneously evolving O2 through oxygenic photosynthesis and fixing nitrogen via nitrogenase. Since nitrogenase is irreversibly inactivated by O2, accommodation of the two metabolic pathways has led to biochemical and/or structural adaptations that protect the enzyme from O2. In some species, differentiated cells (heterocysts) are produced within the filaments. PSII is absent in the heterocysts, while PSI activity is maintained. In other, nonheterocystous species, however, a “division of labor” occurs whereby individual cells within a colony appear to ephemerally fix nitrogen while others evolve oxygen. Using membrane inlet mass spectrometry (MIMS) in conjunction with tracer 18O2 and inhibitors of photosynthetic and respiratory electron transport, we examined the light dependence of O2 consumption in Trichodesmium sp. IMS 101, a nonheterocystous, colonial cyanobacterium, and Anabaena flos‐aquae (Lyngb.) Bréb. ex Bornet et Flahault, a heterocystous species. Our results indicate that in both species, intracellular O2 concentrations are maintained at low levels by the light‐dependent reduction of oxygen via the Mehler reaction. In N2‐fixing Trichodesmium colonies, Mehler activity can consume ~75% of gross O2 production, while in Trichodesmium utilizing nitrate, Mehler activity declines and consumes ~10% of gross O2 production. Moreover, evidence for the coupling between N2 fixation and Mehler activity was observed in purified heterocysts of Anabaena, where light accelerated O2 consumption by 3‐fold. Our results suggest that a major role for PSI in N2‐fixing cyanobacteria is to effectively act as a photon‐catalyzed oxidase, consuming O2 through pseudocyclic electron transport while simultaneously supplying ATP in both heterocystous and nonheterocystous taxa.  相似文献   
106.
CXCR1 and CXCR2 mediate migratory activities in response to IL-8 and other ELR+-CXC chemokines (e.g., GCP-2 and NAP-2). In vitro, activation of migration is induced by low IL-8 concentrations (10-50 ng/mL), whereas migratory shut-off is induced by high IL-8 concentrations (1000 ng/mL). The stimulation of CXCR1 and CXCR2 by IL-8 concentrations that result in migratory activation induced focal adhesion kinase (FAK) phosphorylation in a G(alpha)i-dependent manner. The expression of FRNK, a dominant negative mutant of FAK, perturbed migratory responses to the activating dose of 50 ng/mL IL-8. The migration-activating concentrations of 50 ng/mL GCP-2 and NAP-2 induced less potent migratory responses and FAK phosphorylation in CXCR2-expressing cells as compared with IL-8. These results indicate that FAK is phosphorylated, and required, for the chemotactic response under conditions of migratory activation by ELR+-CXC chemokines. In addition, FAK phosphorylation was determined following exposure to migration-attenuating concentrations of IL-8. In CXCR1-RBL cells this treatment resulted in FAK phosphorylation, in similar levels to those induced by activating concentrations of IL-8. In contrast, in CXCR2-RBL cells the migration-attenuating concentrations of IL-8 induced promoted levels of FAK phosphorylation and different patterns of FAK phosphorylation on its six potential tyrosine phosphorylation sites, as compared to activating concentrations of the chemokine. Exposure to IL-8 resulted not only in FAK phosphorylation but also in its cellular redistribution, indicated by the formation of defined contact regions with the substratum, enriched in phosphorylated FAK and vinculin. Overall, FAK phosphorylation was associated with, and found to be differently regulated upon, ELR+-CXC chemokine-induced migration.  相似文献   
107.
Previously we suggested that interaction between voltage-gated K+ channels and protein components of the exocytotic machinery regulated transmitter release. This study concerns the interaction between the Kv2.1 channel, the prevalent delayed rectifier K+ channel in neuroendocrine and endocrine cells, and syntaxin 1A and SNAP-25. We recently showed in islet beta-cells that the Kv2.1 K+ current is modulated by syntaxin 1A and SNAP-25. Here we demonstrate, using co-immunoprecipitation and immunocytochemistry analyses, the existence of a physical interaction in neuroendocrine cells between Kv2.1 and syntaxin 1A. Furthermore, using concomitant co-immunoprecipitation from plasma membranes and two-electrode voltage clamp analyses in Xenopus oocytes combined with in vitro binding analysis, we characterized the effects of these interactions on the Kv2.1 channel gating pertaining to the assembly/disassembly of the syntaxin 1A/SNAP-25 (target (t)-SNARE) complex. Syntaxin 1A alone binds strongly to Kv2.1 and shifts both activation and inactivation to hyperpolarized potentials. SNAP-25 alone binds weakly to Kv2.1 and probably has no effect by itself. Expression of SNAP-25 together with syntaxin 1A results in the formation of t-SNARE complexes, with consequent elimination of the effects of syntaxin 1A alone on both activation and inactivation. Moreover, inactivation is shifted to the opposite direction, toward depolarized potentials, and its extent and rate are attenuated. Based on these results we suggest that exocytosis in neuroendocrine cells is tuned by the dynamic coupling of the Kv2.1 channel gating to the assembly status of the t-SNARE complex.  相似文献   
108.
Fatty acid-bile acid conjugates and especially arachidyl amido cholic acid are synthetic molecules that were shown to prevent cholesterol gallstone formation in mice and hamsters as well as to dissolve pre-existing gallstones in mice. To measure these novel compounds we developed a liquid chromatography electrospray tandem mass spectrometry method based on the analysis of 100 microL of plasma with stearyl amido cholic acid (stamchol, 1.5 microM/L) added as internal standard. Repeatable calibrations between 0 and 50 microM/L exhibited consistent linearity and reproducibility. Inter- and intraassay C.V.s were 5.3-11.4% and 2.6-6.4%, respectively, at targeted concentrations of 0.1, 2.3 and 50 microM/L.  相似文献   
109.
Transposition of bacteriophage Mu uses two DNA cleavage sites and six transposase recognition sites, with each recognition site divided into two half-sites. The recognition sites can activate transposition of non-Mu DNA sequences if a complete set of Mu sequences is not available. We have analyzed 18 sequences from a non-Mu DNA molecule, selected in a functional assay for the ability to be transposed by MuA transposase. These sequences are remarkably diverse. Nonetheless, when viewed as a group they resemble a Mu DNA end, with a cleavage site and a single recognition site. Analysis of these "pseudo-Mu ends" indicates that most positions in the cleavage and recognition sites contribute sequence-specific information that helps drive transposition, though only the strongest contributors are apparent from mutagenesis data. The sequence analysis also suggests variability in the alignment of recognition half-sites. Transposition assays of specifically designed DNA substrates support the conclusion that the transposition machinery is flexible enough to permit variability in half-site spacing and also perhaps variability in the placement of the recognition site with respect to the cleavage site. This variability causes only local perturbations in the protein-DNA complex, as indicated by experiments in which altered and unaltered DNA substrates are paired.  相似文献   
110.
Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulin-regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily members in their activated forms triggered two major cytoplasmic events: membrane blebbing, characteristic of several types of cell death, and extensive autophagy, which is typical of autophagic (type II) programmed cell death. These two different cellular outcomes were totally independent of caspase activity. It was also found that dominant negative mutants of DAPk or DRP-1 reduced membrane blebbing during the p55/tumor necrosis factor receptor 1-induced type I apoptosis but did not prevent nuclear fragmentation. In addition, expression of the dominant negative mutant of DRP-1 or of DAPk antisense mRNA reduced autophagy induced by antiestrogens, amino acid starvation, or administration of interferon-gamma. Thus, both endogenous DAPk and DRP-1 possess rate-limiting functions in these two distinct cytoplasmic events. Finally, immunogold staining showed that DRP-1 is localized inside the autophagic vesicles, suggesting a direct involvement of this kinase in the process of autophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号